37 research outputs found

    Resolving multi-proxy transitive vote delegation

    Get PDF
    Solving a delegation graph for transitive votes is already a non-trivial task for many programmers. When extending the current main paradigm, where each voter can only appoint a single transitive delegation, to a system where each vote can be separated over multiple delegations, solving the delegation graph becomes even harder. This article presents a solution of an example graph, and a non-formal proof of why this algorithm works

    Incorporating prior knowledge into deep neural network controllers of legged robots

    Get PDF

    Developing an embodied gait on a compliant quadrupedal robot

    Get PDF
    Incorporating the body dynamics of compliant robots into their controller architectures can drastically reduce the complexity of locomotion control. An extreme version of this embodied control principle was demonstrated in highly compliant tensegrity robots, for which stable gait generation was achieved by using only optimized linear feedback from the robot's sensors to its actuators. The morphology of quadrupedal robots has previously been used for sensing and for control of a compliant spine, but never for gait generation. In this paper, we successfully apply embodied control to the compliant, quadrupedal Oncilla robot. As initial experiments indicated that mere linear feedback does not suffice, we explore the minimal requirements for robust gait generation in terms of memory and nonlinear complexity. Our results show that a memory-less feedback controller can generate a stable trot by learning the desired nonlinear relation between the input and the output signals. We believe this method can provide a very useful tool for transferring knowledge from open loop to closed loop control on compliant robots

    Dual Rectified Linear Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recurrent Neural Networks

    Full text link
    In this paper, we introduce a novel type of Rectified Linear Unit (ReLU), called a Dual Rectified Linear Unit (DReLU). A DReLU, which comes with an unbounded positive and negative image, can be used as a drop-in replacement for a tanh activation function in the recurrent step of Quasi-Recurrent Neural Networks (QRNNs) (Bradbury et al. (2017)). Similar to ReLUs, DReLUs are less prone to the vanishing gradient problem, they are noise robust, and they induce sparse activations. We independently reproduce the QRNN experiments of Bradbury et al. (2017) and compare our DReLU-based QRNNs with the original tanh-based QRNNs and Long Short-Term Memory networks (LSTMs) on sentiment classification and word-level language modeling. Additionally, we evaluate on character-level language modeling, showing that we are able to stack up to eight QRNN layers with DReLUs, thus making it possible to improve the current state-of-the-art in character-level language modeling over shallow architectures based on LSTMs

    Comparing trotting and turning strategies on the quadrupedal Oncilla Robot

    Get PDF
    In this paper, we compare three different trotting techniques and five different turning strategies on a small, compliant, biologically inspired quadrupedal robot, the Oncilla. The locomotion techniques were optimized on the actual hardware using a treadmill setup, without relying on models. We found that using half ellipses as foot trajectories resulted in the fastest gaits, as well as the highest robustness against parameter changes. Furthermore, we analyzed the importance of using the scapulae for turning, from which we observed that although not necessary, they are needed for turning with a higher speed

    Morphological properties of mass-spring networks for optimal locomotion learning

    Get PDF
    Robots have proven very useful in automating industrial processes. Their rigid components and powerful actuators, however, render them unsafe or unfit to work in normal human environments such as schools or hospitals. Robots made of compliant, softer materials may offer a valid alternative. Yet, the dynamics of these compliant robots are much more complicated compared to normal rigid robots of which all components can be accurately controlled. It is often claimed that, by using the concept of morphological computation, the dynamical complexity can become a strength. On the one hand, the use of flexible materials can lead to higher power efficiency and more fluent and robust motions. On the other hand, using embodiment in a closed-loop controller, part of the control task itself can be outsourced to the body dynamics. This can significantly simplify the additional resources required for locomotion control. To this goal, a first step consists in an exploration of the trade-offs between morphology, efficiency of locomotion, and the ability of a mechanical body to serve as a computational resource. In this work, we use a detailed dynamical model of a Mass–Spring–Damper (MSD) network to study these trade-offs. We first investigate the influence of the network size and compliance on locomotion quality and energy efficiency by optimizing an external open-loop controller using evolutionary algorithms. We find that larger networks can lead to more stable gaits and that the system’s optimal compliance to maximize the traveled distance is directly linked to the desired frequency of locomotion. In the last set of experiments, the suitability of MSD bodies for being used in a closed loop is also investigated. Since maximally efficient actuator signals are clearly related to the natural body dynamics, in a sense, the body is tailored for the task of contributing to its own control. Using the same simulation platform, we therefore study how the network states can be successfully used to create a feedback signal and how its accuracy is linked to the body size

    Terrain classification for a quadruped robot

    Get PDF
    Using data retrieved from the Puppy II robot at the University of Zurich (UZH), we show that machine learning techniques with non-linearities and fading memory are effective for terrain classification, both supervised and unsupervised, even with a limited selection of input sensors. The results indicate that most information for terrain classification is found in the combination of tactile sensors and proprioceptive joint angle sensors. The classification error is small enough to have a robot adapt the gait to the terrain and hence move more robustly
    corecore